Notation | explanation | value |
---|---|---|
TD | threshold of distance graph | 7500m |
TI | threshold of interaction graph | 30 |
TC | threshold of correlation graph | 0.65 |
xxxxxxxxxx
181{
2 "L": 1,
3 "PT": 7,
4 "lr": 5e-05,
5 "TT": 4,
6 "DenseUnits": 32,
7 "GALUnits": 64,
8 "LSTMUnits": 64,
9 "ESlength": 500,
10 "patience": 0.1,
11 "Normalize": "True",
12 "TI": 30.0,
13 "CT": 6,
14 "K": 1,
15 "GALHeads": 2,
16 "Graph": "Distance-Interaction-Correlation",
17 "GLL": 1
18}
实验编号 | 模型版本含义 | Test-RMSE值 | Test-MAPE |
---|---|---|---|
1 | AMulti-GCLSTM-V2 | 6.98410 | 0.35470 |
2 | AMulti-GCLSTM-V2 | 7.06971 | 0.36585 |
3 | AMulti-GCLSTM-V2 | 7.00403 | 0.34867 |
4 | AMulti-GCLSTM-V2 | 7.04557 | 0.34797 |
5 | AMulti-GCLSTM-V2 | 7.05717 | 0.36398 |
6 | AMulti-GCLSTM-V2 | 6.97287 | 0.34735 |
7 | AMulti-GCLSTM-V2 | 7.03885 | 0.35656 |
8 | AMulti-GCLSTM-V2 | 7.09894 | 0.36024 |
9 | AMulti-GCLSTM-V2 | 7.02147 | 0.33930 |
均值、标准差 | 均值 7.03252,标准差 0.03865 | ||
平均耗时 | 0.5h~1.5h |
xxxxxxxxxx
301{
2 "TrainDays": "All",
3 "DenseUnits": 32,
4 "GALUnits": 64,
5 "Graph": "Distance-Interaction-Correlation",
6 "CT": 6,
7 "Train": "False",
8 "Dataset": "DiDi",
9 "GLL": 1,
10 "TD": 7500.0,
11 "GALHeads": 2,
12 "patience": 0.1,
13 "Epoch": 10000,
14 "CodeVersion": "ST0",
15 "TT": 4,
16 "TC": 0.65,
17 "Device": "1",
18 "L": 1,
19 "PT": 7,
20 "ESlength": 500,
21 "LSTMUnits": 64,
22 "TI": 30.0,
23 "Normalize": "True",
24 "City": "Xian",
25 "lr": 5e-05,
26 "DataRange": "All",
27 "BatchSize": 128,
28 "K": 1,
29 "Group": "Xian"
30}
AMulti-GCLSTM-V2 多次实验结果,每次实验耗时 0.5h~1.5h
实验编号 | Test-RMSE | Test-MAPE |
---|---|---|
1 | 5.80502 | 0.36022 |
2 | 5.88970 | 0.35590 |
3 | 6.00412 | 0.45126 |
4 | 5.93798 | 0.37956 |
5 | 6.01064 | 0.39242 |
6 | 5.89309 | 0.40803 |
7 | 5.84786 | 0.35915 |
8 | 5.88188 | 0.36777 |
9 | 5.97407 | 0.42393 |
10 | 5.80497 | 0.37014 |
最终结果:Test-RMSE 均值 5.90493,标准差 0.07142
xxxxxxxxxx
301{
2 "TrainDays": "All",
3 "patience": 0.1,
4 "Train": "False",
5 "TT": 4,
6 "City": "ShanghaiV1",
7 "ESlength": 500,
8 "K": 1,
9 "GLL": 1,
10 "LSTMUnits": 64,
11 "Normalize": "True",
12 "PT": 7,
13 "Epoch": 10000,
14 "GALUnits": 64,
15 "TI": 100.0,
16 "lr": 2e-05,
17 "Dataset": "Metro",
18 "DenseUnits": 32,
19 "L": 1,
20 "Group": "Shanghai",
21 "Graph": "Distance-line-Correlation",
22 "DataRange": "All",
23 "GALHeads": 2,
24 "CodeVersion": "ST_Sim_0",
25 "CT": 6,
26 "TD": 5000.0,
27 "TC": 0.7,
28 "BatchSize": 128,
29 "Device": "1"
30}
AMulti-GCLSTM-V2 多次实验结果,每次实验耗时 6.5h~7.5h
实验编号 | Test-RMSE | Test-MAPE |
---|---|---|
1 | 148.88104 | 0.13178 |
2 | 149.58350 | 0.14325 |
3 | 168.16162 | 0.14498 |
4 | 155.88750 | 0.19575 |
5 | 155.09171 | 0.18060 |
6 | 166.13303 | 0.18040 |
7 | 157.08799 | 0.15245 |
最终结果:Test-RMSE 均值 157.26091,标准差 6.90058
xxxxxxxxxx
301{
2 "GALUnits": 64,
3 "TD": 1000.0,
4 "TI": 500.0,
5 "K": 1,
6 "Train": "False",
7 "CT": 6,
8 "patience": 0.1,
9 "ESlength": 200,
10 "Graph": "Distance-Correlation",
11 "Normalize": "True",
12 "lr": 2e-05,
13 "Device": "0",
14 "BatchSize": 128,
15 "LSTMUnits": 64,
16 "City": "Beijing",
17 "TrainDays": "All",
18 "CodeVersion": "ST_Sim1_0",
19 "TT": 4,
20 "GALHeads": 2,
21 "DenseUnits": 32,
22 "PT": 7,
23 "Group": "Beijing",
24 "L": 1,
25 "DataRange": "All",
26 "TC": 0.1,
27 "Epoch": 10000,
28 "Dataset": "ChargeStation",
29 "GLL": 1
30}
AMulti-GCLSTM-V2 多次实验结果 (暂时只跑了4次),每次实验耗时约 10h
实验编号 | Test-RMSE | Test-MAPE |
---|---|---|
1 | 0.80954 | 0.22925 |
2 | 0.82956 | 0.23242 |
3 | 0.82393 | 0.22467 |
4 | 0.81360 | 0.22932 |
最终结果:Test-RMSE 均值 0.81915,标准差 0.0079745